
An extended comparison of the best known
algorithms for finding the unweighted maximum

clique

Deniss Kumlander

Department of Informatics, Tallinn University of Technology,
Raja St.15, 12617 Tallinn,Estonia

kumlander@gmail.com

http://www.kumlander.eu

Abstract. This paper conducts an extended comparison of two best
known at the moment algorithms for finding the unweighted maximum
clique. This test is extremely important from both industry and the-
oretical perspectives. It will be useful for further developing of those
algorithms as clearly demonstrated both algorithms advantages and dis-
advantages, while industry should consider tests result selecting the best
algorithm to be applied in their particular environment.

Key words: maximum clique, vertex colouring, colour classes, branch
and bound, graph theory

The paper is published by Springer-Verlag in Communications in Computer
and Information Science, vol. 14: Modelling, Computation and Optimization in
Information Systems and Management Sciences: Second International Confer-
ence MCO 2008. http://www.springer.com/computer/communications/book/
978-3-540-87476-8

Reference: D. Kumlander, An extended comparison of the best known al-
gorithms for finding the unweighted maximum clique, In: Communications in
Computer and Information Science, vol. 14: Modelling, Computation and Op-
timization in Information Systems and Management Sciences: Second Interna-
tional Conference MCO 2008, Metz, France - Luxembourg, September 2008.
Hoai An Le Thi , Pascal Bouvry, Tao Pham Dinh (eds), Springer-Verlag, 2008,
p. 175 - 181

1 Introduction

Let G = (V,E) be an undirected graph, where V is the set of vertices and
E is the set of edges. Two vertices are called to be adjacent if they are con-
nected by an edge. A clique is a complete subgraph of G, i.e. one whose vertices
are pairwise adjacent. An independent set is a set of vertices that are pair-
wise nonadjacent. A complement graph is an undirected graph G′ = (V,E′),



2 An extended comparison

where E′ = {(vi, vj)|vi, vj ∈ V, i 6= j, (vi, vj) /∈ E} - this is a slightly refor-
mulated definition provided by Bomze et al 1999 [2]. A neighbourhood of a
vertex vi is defined as a set of vertices, which are connected to this vertex, i.e.
N(vi) = {v1, . . . , vk|∀j : vj ∈ V, i 6= j, (vi, vj) ∈ E}. A maximal clique is a clique
that is not a proper subset of any other clique, in other words this clique doesn’t
belong to any other clique. The same can be stated about maximal independent
set. The maximum clique problem is a problem of finding maximum complete
subgraph of G, i.e. maximum set of vertices from G that are pairwise adjacent.
In other words the maximum clique is the largest maximal clique. It is also said
that the maximum clique is a maximal clique that has the maximal cardinality.
The maximum independent set problem is a problem of finding the maximum
set of vertices that are pairways nonadjacent. In other words, none of vertices
belonging to this maximum set is connected to any other vertex of this set. A
graph-colouring problem or a colouring of G is defined to be an assignment of
colours to the graph’s vertices so that no pair of adjacent vertices shares identical
colours. So, all vertices that are coloured by the same colour are nothing more
than an independent set, although it is not always maximal.

All those problems are computationally equivalent, in other words, each one
of them can be transformed to any other. For example, any clique of a graph G
is an independent set for the graph’s complement graph G′. So the problem of
finding the maximum clique is equivalent to the problem of finding the maximum
independent set for a complement graph.

All those problems are NP-hard on general graphs [7] and no polynomial
time algorithms are expected to be found. The maximum clique problem has
many theoretical and practical applications. In fact, a lot of algorithms contain
this problem as a subtask and this is another important applications area for the
problem. The first area of applications is data analyses / finding a similar data:
the identification and classification of new diseases based on symptom correlation
[3], computer vision [1], and biochemistry [11]. Another wide area of applying
the maximum clique is the coding theory [5, 12]. There are many others areas of
the maximum clique application that makes this problem to be important.

2 Introduction into Branch and Bound Algorithms

First of all the branch and bound types of algorithms should be introduced in
case the reader doesn’t have enough knowledge since understanding of those is a
crucial element to understanding main point of algorithms to be described later.
Branch and bound type algorithms do analyse vertices one by one expanding
those by selecting into the next level of analysis all vertices among remaining
that are connected to the expanding one. This next level of expansion is normally
named a depth, so initially, at the first depth all vertices of a graph are presented,
i.e. G1 ≡ G. Then the algorithm is executed and picks up a vertex one by one,
so the first one to analyse will be v11, where the indexes indicate that it is a
version from the first depth and is also the first version on that depth. The
algorithm will form the depth 2 by listening there all vertices connected to the



MCO 2008: c©Springer-Verlag Berlin Heidelberg 2008 3

algorithm considers all vertices adjacent to the v11 and belonging to G1. Those
vertices form a subgraph G2. If G2 is not empty then the first vertex of that
depth will be expanded next - v21. The depth 3 will contain all vertices from G2

that are adjacent to v21 and by the selection logic those will also are adjacent
to the vertex expanded on the first depth, i.e. v11. Let vd1 be the vertex to be
expanded at the depth d and Gd is a subgraph of G on a depth d that contains
the following vertices: Vd = (vd1, vd2, . . . , vdm). Then a subgraph on the depth
d+1 is Gd + 1 = (Vd+1, E), where Vd+1 = (v(d+1)1, . . . , v(d+1)k) : ∀i v(d+1)i ∈ Vd

and (v(d+1)i, vd1) ∈ E.
Continuing this way the algorithm will finally arrive to a depth where no

vertices exist. Then the previous depth number is compared to the currently
maximum clique size and all vertices expanding at the moment on all previous
levels (those are called a forming clique) are saved as the maximum clique if it is
larger. Anyway the analysis is returned to the previous level and the next vertex
of that level should be expanded now. Let say that we returned to the d-th level
and the previous expanded vertex is vd1. Then the next vertex to be expanded
will be vd2. This should be continued as long as there are vertices on the depth.
The algorithm should stop if all vertices of the first level are analysed.

The branch and bound algorithm by itself is nothing else than an exhaustive
search and is very bad from the combinatorial point of view. Therefore it is
always used together with a special check allowing to cut branches (cases) that
cannot produce any better solution that the current maximum one. This check
is called a pruning formula and the classical work [6] in the field of finding the
maximum clique suggests using the following:

if d−m + n ≤ CBC (1)

where d is a depth, m is the current (under analyses) vertex index on a depth, n
is the total number of vertices in the depth and CBC is the current maximum
clique size. Actually it can be generalised into the following:

if d− 1 + Degree(Gd) ≤ CBC (2)

where Degree equals to n + 1−m since d - 1 represents the number of vertices
in the forming clique (expanded on previous levels) and n + 1 −m the number
of vertices can be potentially included into the clique (and called a degree of the
depth/branch).

If this formula holds then the depth is pruned - it is not analysed further and
the algorithm immediately returns to the previous depth.

3 Different Levels of Using a Vertex Colouring in
Nowadays Algorithms

Here two algorithms to be reviewed that are using vertex colouring for finding the
maximum clique on different levels. The first idea is to re-apply a heuristic vertex
colouring on each new level of a branch and bound algorithm. Another idea is



4 An extended comparison

to apply the colouring only once before the branch and bound routine starts
and then use results on the permanent base. There are two representatives of
both ways nowadays, which are claimed to be quickest; therefore a comparison
of those algorithms is worth to do to identify how different ways affects the
performance in different cases to be solved.

3.1 Re-applying a Heuristic Vertex Colouring

This subchapter algorithm is developed by Tomita and Seki [13]. Both this and
the next chapter algorithms use the same idea - any colour class is an independent
set and therefore no more than one vertex from each colour class can participate
in a clique. The pruning formula for the algorithm is still the same:

if d− 1 + Degree(Gd) ≤ CBC (3)

but Degree here represents the number of existing colour classes (independent
sets). The number of existing colour classes is obviously much better estimation
than the number of remaining vertices. Therefore the number of analysed sub-
graphs decreased dramatically. Obviously the exact colouring cannot be used as
it is a task of the same complexity as the maximum clique finding one. Therefore
a heuristic colouring is used. The main difference between this algorithm and
the next one is an approach to calculating the number of existing colours. This
subchapter algorithm finds the heuristic vertex-colouring on each new depth.
Besides, it reorders vertices after finding the colouring by colour index in de-
creasing order. Therefore, instead of calculating the degree each time a new
vertex is expanded, the expanding vertex colour index is used as a degree. The
pruning formula is reformulated into the following one:

if d− 1 + colour index(m) ≤ CBC (4)

where d is a depth, m is the current (under analyses) vertex index on a depth,
and CBC is the current maximum clique size.

3.2 Re-using a Heuristic Vertex Colouring

Here we present an algorithm that obtains a vertex colouring only once and
then re-use during its work. The algorithm was developed by Kumlander [10]
independently and simultaneously with the previous one. The first step of the
algorithm is to obtain a heuristic vertex colouring and re-order vertices by colour
classes, so that colour classes will appear one by one in the new vertices order.
The algorithm uses the vertex colouring to apply two pruning rules - the direct
one and the backtracking one. The backtracking search described below cannot
be used for the previous class of algorithm re-colouring on each depth as the
backtracking relies on a fixed vertices ordering. Therefore it is a natural part
of algorithms from the re-using class. The direct pruning rule is defined using



MCO 2008: c©Springer-Verlag Berlin Heidelberg 2008 5

a degree function, which equals to the number of existing colour classes on a
depth. The algorithm prunes also:

if d− 1 + Degree ≤ CBC (5)

where d is a depth, Degree is the depth (subgraph) degree, which is the number
of existing colour classes and CBC is the size of the current maximum clique.
This algorithm calculates the degree by examining what colour classes exist on a
depth. Actually the degree is calculated only ones when the depth is formed and
later only adjusted by decreasing on one when the next vertex to be analysed is
from another colour class than the previous one. This improves the performance
dramatically.

In fact the fixed ordering lets also to apply here one more technique: the
backtracking search. It examines the graph vertices in the opposite to the stan-
dard branch and bound algorithm’s order. The classical vertex level backtracking
considers first of all all cliques that could be built using only vn, then all cliques
that could contain vn−1 and vn, and so forth. The general rule - it considers at
the i-th step all cliques that could contain{vi, vi+1, vi+2, . . . , vn}. The core idea
here is to keep in memory the size of the maximum clique found for each i-th step
(i.e. i-th vertex at the highest level) in a special array b. So b[i] is the maximum
clique for the i-th vertex while searching backward. This allows employing one
more pruning formula:

if d− 1 + b[m] ≤ CBC (6)

Besides the algorithm can stop the backtracking iteration and go to the next one
if a new maximum clique is found. Colour classes can improve the backtracking
by doing it on the colour classes’ level instead of individual vertices. Lets say that
vertices are coloured and sorted by colour classes, i.e. V = {Cn, Cn−1, . . . , C1},
where Ci is the i-th colour (or we call it the i-th colour class). The algorithm
now considers first of all all cliques that could be built using only vertices of
the C1, i.e. of the first colour class, then all cliques that could be built using
vertices of C1 and C2, and so forth. The general rule - it considers at the i-th
step all cliques of {Ci, Ci−1, . . . , C1} vertices. The array b is also used, but the
index here is the vertex colour index. So the pruning formula will be:

if d− 1 + b[colour index(m)] ≤ CBC (7)

The stopping condition remains since the maximum clique size of a subgraph
formed by {Ci, Ci−1, . . . , C1} is either equal to the maximum clique size of a
subgraph formed by {Ci−1, . . . , C1} or is larger on 1.

4 Tests

Here the described algorithms of both classes are analysed on DIMACS graphs,
which are a special package of graphs used in the Second DIMACS Implemen-
tation Challenge [8, 9] to measure performance of algorithms on graphs having
different, special structures.



6 An extended comparison

As it has been mentioned earlier, there is a very simple and effective algorithm
for the maximum clique problem proposed by Carraghan and Pardalos [6]. This
algorithm was used as a benchmark in the Second DIMACS Implementation
Challenge [9]. Besides, using of this algorithm as a benchmark is advised in one of
the DIMACS annual reports [8]. That’s why it will be used in the benchmarking
below and is called the ”base” algorithm. Results are presented as ratios of
algorithms spent times on finding the maximum clique - so the same results can
be reproduced on any platforms. Ratios are calculated using the benchmarking
algorithm [6]. The larger ratio is the quicker a tested algorithm works as the
ratio shows how much quicker the tested one is. The compared algorithms were
programmed using the same programming language and the same programming
technique. The greedy algorithm was used to find a vertex-colouring.

TS - time needed to find the maximum clique the base algorithm divided
by time needed to find the maximum clique by the algorithm re-applying colour
classes [13].

VColor-BT-u - time needed to find the maximum clique the base algorithm
divided by time needed to find the maximum clique by the algorithm re-using
colour classes [10].

Table 1. Benchmark results on DIMACS graphs

Graph name Edge density Vertices Maximum clique
size

TS VColor-
BT-u

brock200 2 0.50 200 12 2.3 4.0
brock200 3 0.61 200 15 3.3 3.2
hamming8-4 0.64 256 16 39.9 7848.3
johnson16-2-4 0.76 120 8 7.0 20.9
keller4 0.65 171 11 6.7 11.8
p hat300-1 0.24 300 8 1.0 1.3
p hat300-2 0.49 300 25 4.8 6.6
p hat500 1 0.25 500 9 0.9 1.5
p hat700 1 0.25 700 11 1.1 1.9
sanr400 0.7 0.70 400 21 1.4 5.6
2dc.256* 0.47 256 7 6.6 14.5

* - An original task for this graph is to find the maximum independent set,
so the maximum clique is found from the complement graph.

For example, 4.8 in the column markedTS means that Tomita and Seki
algorithm [13] requires 4.8 times less time to find the maximum clique than
the base one. The quickest result of each row is highlighted by the italic font.
Presented results show that the VColor-BT-u algorithm [10] outperforms the
other in most cases. Both reviewed in the paper algorithms are faster than the
benchmarking algorithms.

The next test will be conducted on random graphs from densities from 10% to
90% with a step of 10%. 100 instances of graphs have been generated per density



MCO 2008: c©Springer-Verlag Berlin Heidelberg 2008 7

and an average ratio is found per algorithm. Here you can see thatVColor-BT-u

Table 2. Benchmark results on random graphs

Edge density Vertices TS VColor-BT-u

0.10 1300 0.8 1.0
0.20 1000 1.4 1.3
0.30 600 1.9 1.5
0.40 500 2.7 1.7
0.50 300 3.3 2.3
0.60 200 5.4 3.5
0.70 150 10.8 5.6
0.80 100 40.9 16.2
0.90 80 200.6 102.1

looses to Tomita and Seki algorithm practically on all densities.

5 Conclusion

In this paper two currently best known algorithms for finding the unweighted
maximum clique are described and what is more important are compared on dif-
ferent graph types. Both algorithms are branch and bound and both are using
colour classes obtained from a heuristic vertex-colouring to find the maximum
clique. The main difference is the method of using the colouring. One of those
keep re-colouring the graph for each depth formed during the algorithm work
and the second does it only once before the core part of the algorithm is ex-
ecuted. The first looses in spending time each time re-colouring and cannot
employ backtracking search, while the second looses in precision of colouring
the deeper the depth is. Therefore both algorithms have certain disadvantages
been both reported as the best known. That is why the comparison test was
interested for the industry and theory. Tests were conducted for both DIMACS
graphs representing certain important graph types and for randomly generated
graphs. The general result is that the re-using colouring algorithm [10] is the
better technique is most cases for DIMACS graphs and the re-applying colour-
ing algorithm [13] have shown superb results on random graphs. This let us to
conclude that there is no clear winner and tests conducted in the paper should
be carefully revisited selecting one or another algorithm to be applied basing on
the particular environment it should happen in.

References

1. Ballard, D.H., Brown, M.: Computer Vision. Prentice-Hall, Englewood Cliffs, NJ
(1982)



8 An extended comparison

2. Bomze, M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem.
Handbook of Combinatorial Optimization, vol. 4, In D.-Z. Du and P. M. Pardalos,
eds. Kluwer Academic Publishers, Boston, MA (1999)

3. Bonner, R.E.: On some clustering techniques. IBM J. of Research and Development
8, 22–32 (1964)

4. Brelaz, D.: New Methods to Color the Vertices of a Graph. Communications of the
ACM 22, 251–256 (1979)

5. Brouwer, A.E., Shearer, J.B., Sloane, N.J.A., Smith, W.D.: A new table of constant
weight codes. J.IEEE Trans. Information Theory 36, 1334–1380 (1990)

6. Carraghan, R., Pardalos, P.M. An exact algorithm for the maximum clique problem.
Op. Research Letters 9, 375–382 (1990)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman, New-York (2003)

8. DIMACS, Center for Discrete Mathematics and Theoretical Computer Science. An-
nual Report, December (1999)

9. Johnson, D.S., Trick, M,A,, eds.: Cliques, Coloring and Satisfiability: Second DI-
MACS Implementation Challenge. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol 26. American Mathematical Society (1996)

10. Kumlander, D.: Some practical algorithms to solve the maximum clique problem.
Tallinn University of Technology Press, Tallinn (2005)

11. Miller, W.: Building multiple alignments from pairwise alignments. Bioinformatics,
169–176 (1992)

12. Sloane, N.J.A.: Unsolved problems in graph theory arising from the study of codes.
Graph Theory Notes of New York XVIII, 11–20 (1989)

13. Tomita, E., Seki, T.: An effcient branch-and-bound algorithm for finding a maxi-
mum clique. In: Discrete Mathematics and Theoretical Computer Science, 4th Inter-
national Conference, DMTCS 2003, pp. 278–289. LNCS, vol. 2731, Springer, Berlin
(2003)


