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Editor’s Introduction

Most people understand a computation as a process evoked when a computational agent acts on
its inputs under the control of an algorithm. The classical Turing machine model has long served
as the fundamental reference model because an appropriate Turing machine can simulate every
other computational model known. The Turing model is a good abstraction for most digital
computers because the number of steps to execute a Turing machine algorithm is predictive of
the running time of the computation on a digital computer. However, the Turing model is not as
well matched for the natural, interactive, and continuous information processes frequently
encountered today. Other models whose structures more closely match the information processes
involved give better predictions of running time and space. Models based on transforming
representations may be useful.

Peter J. Denning
Editor-in-Chief
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The question before us—what is computation? —is at least as old as computer science. It is one
of those questions that will never be fully settled because new discoveries and maturing
understandings constantly lead to new insights and questions about existing models. It is like
the fundamental questions in other fields—for example, “what is life?” in biology and “what are
the fundamental forces?” in physics—that will never be fully resolved. Engaging with the
guestion is more valuable than finding a definitive answer.

This symposium is an exploration of the computation question by many observers. To get the
discussion going, | (as Ubiquity editor) have composed this opening statement. | do not intend
this as a definitive answer, but as a reflection to stimulate commentary and reactions. The
commentators may not agree with everything in this opening statement or with what the other
commentators have to say. Our hope is that readers will gain a greater appreciation of
pervasiveness of computation and the value of the ongoing exploration of the nature of
computation.

Why Now?
Why take up this question now? There are several reasons.

It was selected as the most important question facing our field by over one hundred of the two
hundred participants in the Rebooting Computing Summit of January 2009
(http://rebootingcomputing.org). They were trying to come to grips with the identity of the
computing field as they worked to attract young people and collaborate with others in other
fields.

It addresses the issue of our core identity, which has been under stress in the past decade
because of job growth, outsourcing, expansion in the number of fields affected by computing,
and internal tensions between various elements of the computing field.

Many of us desire to be accepted as peers at the “table of science” and the “table of
engineering”. Our current answers to this question are apparently not sufficiently compelling
for us to be accepted at those tables.
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We need to respond to friends and colleagues in other fields who are discovering new natural
computational processes. They look to us for insights in how the processes work, what
algorithms might be behind them, and how we might collaborate to discover more.

The term “computational thinking” has recently become popular [win06], after hibernating
many years in the jargon of our field. We are discovering that neither we in the field nor our
friends outside agree on what this term means. Future education and research policies depend
on the answer. We need a better answer.

History of the Term Computation

Our review of the history of computer science reveals an interesting progression of definitions
for computer science [den08]:

e study of automatic computing (1940s)

e study of information processing (1950s)

e study of phenomena surrounding computers (1960s)

e study of what can be automated (1970s)

e study of computation (1980s)

e study of information processes, both natural and artificial (2000s)

Over time, the definition of computer science has been a moving target. These stages reflect
increasingly sophisticated understandings of computation.

In the 1930s, Kurt Godel [god34], Alonzo Church [chu36], Emil Post [pos36], and Alan Turing
[tur37] independently gave us the first definitions of computation. Godel defined it in terms of
the evaluations of recursive functions. Church defined it in terms of the evaluations of “lambda
expressions”, a general notation for functions. Post defined it as series of strings successively
rewritten according to a given rule set. Turing defined it the sequence of states of an abstract
machine with a control unit and a tape (the Turing machine). Influenced by Gédel’s
incompleteness theorems, Church, Turing, and Post discovered functions that could not be
evaluated by algorithms in their systems (undecidable problems). Church and Turing both
speculated that any effective procedure could be represented within their systems (the Church-
Turing thesis). These definitions underlay the earliest formal notions of computing.

In the time that these men wrote, the terms “computation” and “computers” were already in
common use, but with different connotations from today. Computation meant the mechanical
steps followed to evaluate mathematical functions. Computers were people who did
computations. In recognition of the social changes they were ushering in, the designers of the
first digital computer projects all named their systems with acronyms ending in “-AC”, meaning
automatic computer—resulting in names such as ENIAC, UNIVAC, and EDSAC.
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The standard formal definition of computation, repeated in all the major textbooks, derives
from these early ideas. Computation is defined as the execution sequences of halting Turing
machines (or their equivalents). An execution sequence is the sequence of total configurations
of the machine, including states of memory and control unit. The restriction to halting machines
is there because algorithms were intended to implement functions: a nonterminating execution
sequence would correspond to an algorithm trying to compute an undefined value.

The famous ACM Curriculum 1968 [acm68] was the first curriculum recommendation in
computer science. It translated these formal definitions into practice by defining computation
as information processes generated by algorithms. They said the field consists of three main
parts: information structures and processes, information processing systems, and
methodologies.

Around 1970, Edsger Dijkstra began to distinguish algorithms from computations. An algorithm,
he said, is a static description, a computation the dynamic state sequence evoked from a
machine by an algorithm. The computation is the actual work. He wanted to constrain the
structure of algorithms so that the correctness of their computations could more easily be
proved. With this he launched the structured programming movement.

The computer science formalists were not the only ones interested in a mathematical definition
of computation. In the OS (operating systems) world, the process (short for computational
process) became a central concern [dev66, dij68, cod73]. A process was intended as an entity
containing the execution of an algorithm on a machine. Dennis and Van Horn defined a process
as “locus of control through an instruction sequence” [dev66]. Coffman, Denning, and Organick
defined process as the sequence of states of processor and memory for a program in execution
[cod73, org73]. The process abstraction enabled time-sharing: processes could be suspended
from the processor and resumed later. The OS interpretation of process differed from the
formal interpretation in one key point: An OS process could be intentionally nonterminating.

During the 1960s there was considerable debate on the definition of computer science. Many
were concerned that the formal definition of computation was too restrictive; for example, the
new field of artificial intelligence was not obviously computational. Newell, Simon, and Perlis
proposed to remedy this by broadening to include all “phenomena surrounding computers”
[nps67, per62]. At the same time, many were also concerned about whether the word science
in the title was deserved. Economics Nobel Laureate Herb Simon claimed that some fields of
study, such as economics and computer science, are sciences even though they did not study
natural processes [sim69]. Because they encompassed new phenomena that most people
considered computational, these new definitions were widely accepted. This was a
fundamental shift in the understanding of computation, which now became pegged to the
activities in and around computers rather than to the presumed algorithmic nature of
information processes.
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A few years later, the COSERS project team, led by Bruce Arden, tied the definition of
computation to a concern for automation [ard83]. This connected computation even more
firmly to the actions of machines.

In the mid and late 1980s, the computational science movement, which was backed by
scientists from many fields, claimed computation (and computational thinking) as a new way of
doing science [def09, der09]. Supercomputers were their main tools. But now computation was
more than the activity of machines; it was a practice of discovery and a way of thinking.

Finally, in the 1990s, scientists from natural science fields started to claim that information
processes exist in their deep structures [den07]. David Baltimore argued this for biology [bal01]
and those working on quantum computing argued it for physics [dav10]. Today, computation is
seen as a natural process as well as an artificial one. This is a serious challenge to the tradition
of definitions tying computation to computers.

New Developments

Since the basic definition of computation was established, there have been three significant
developments that call for rethinking the basic reference model. All three indicate classes of
processes that most people agree are computations, but which do not fit the form of the basic
Turing machine.

Interactive computing. Many systems, such as operating systems, Web servers, and the
Internet itself, are designed to run indefinitely and not halt. Halting is an abnormal event for
these systems. The traditional definition of computation is tied to algorithms, which halt.
Execution sequences of machines running indefinitely seem to violate the definition. Goldin,
Smolka, and Wegner [gsw06] assembled a book of 18 contributions by authors who thought
interactive computing to be computation, even though it didn’t fit the standard formal
definition. The term “reactive system” is often used for a system that continues its operation
indefinitely and responds to stimuli from the environment. A proposed solution to the
definition problem is to expand the definition to include reactive systems as well as algorithmic
computing machines. (I personally prefer the term “interactive system” to “reactive system”
because interactive also allows the system to generate output signals and not just react to
incoming signals.)

In discussing games, James Carse said: “A finite game is played for the purpose of winning, an
infinite game for the purpose of continuing the play.” [car86] When applied to our situation, his
insight highlights the fundamental difference between computations and algorithms (they are
finite games) and computations from nonterminating systems (they are infinite games)

Natural information processes. Leading thinkers in various science fields have declared that
they have discovered information processes in nature. The most conspicuous of these claims is
in Biology, where DNA is seen as an encoded representation of a living organism and DNA
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translation is an information process that transforms the code into amino acids [bal01]. Similar
claims are coming from physicists who see natural information processes behind quantum
mechanics and other natural phenomena. Perhaps the most sweeping version of this claim is
Wolfram’s [wol02]; he believes that all of nature is an information process (best described by
cellular automata) even though we do not know (or may never know) the algorithms that
generate natural processes. Computer science has been challenged to redefine computation in
a way that accommodates these discoveries.

Continuous information processes. Turing machines are discrete entities that work with finite
strings of symbols from a finite alphabet. This definition excludes analog computing, which was
very important in the 1920s and continues in some electrical engineering specialties today. In
the 1920s, Vannevar Bush developed the differential analyzer, a machine of gears, levers, and
rotating shafts that could solve differential equations. Electrical engineers developed their own
versions of analog differential equation solvers; these technologies are still in use today. Why is
solving a differential equation on a supercomputer a computation but solving the same
equation with an electrical network is not?

Turing himself argued that in the real world measurement error limits the granularity at which
we can observe continuous processes; therefore there is no practical difference between what
discrete and continuous machines can compute. Others are not so sure because a simple
roundoff error in the machine can cause its prediction of a continuous function to err
significantly.

The mathematical models (such as partial differential equations) used in science and
engineering assume continuous functions on real numbers. Many optimal algorithms for
making predictions with these models are formulated without reference to a Turing model and
lead to more accurate predictions of computational work than can be obtained from a Turing
model of the same solution method [trw80].

Claude Shannon (a student of Bush) said that continuous signals contain information and that
his information theory applies to all such signals [shw49]; he focused on discrete (binary)
signals because they were the coming wave in communication systems. Today we use his
information theory for discrete computing but ignore it for continuous information signals.
Software radios today use signal processing algorithms to sample and decode radio signals.
Why is the action of a software radio a computation but not the action of an Armstrong FM
circuit? Paolo Rocchi (IBM, Rome Italy) has just completed a book showing that there is no clear
boundary between analog and digital computation [roc10]. He challenges us to define
computation in a way that encompasses both.

Rethinking the Definition

Computation is always defined relative to a computational model that specifies the agent
performing the computation. Computation is seen as a process generated by that agent.
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Any of the four computational models proposed in the 1930s -- recursive functions, rewriting
rules, lambda-calculus, and Turing machine -- could have been used as the reference model for
computation. The Turing machine won that designation because it most closely resembled the
new generation of digital electronic computers.

Over the years, new computational models were proposed including probabilistic machines,
non-deterministic machines, parallel program schemata, Petri Nets, neural networks, DNA
string systems, and others. Every one of these systems was found to be Turing equivalent. This
bolstered belief in the Church-Turing thesis and reaffirmed the reference model status of the
Turing machine.

So, what is the problem with the Turing model? To many, the Turing machine model is a poor
representation of the systems they are interested in. For example, a DNA molecule being
transcribed does not resemble a moveable control unit on an infinite tape. The theorems about
running times of algorithms on Turing machines do not help mathematicians solving continuous
models predict the running times of their models.

Suppose that we dropped our insistence that the Turing model is the unique basis of
computation? That would mean not only that we could use Turing-equivalent models that more
clearly fit the domains we are studying, but also that we could get more accurate predictions of
computational work in those domains than we could with Turing machine models. We would
have more options for designing near-optimal methods for solving problems.

A Transformation of Representations Model

Let us consider an alternative based on a model of information process that may be useful
when the computations appear to be strings or streams, such as in DNA translation, genetic
algorithms, and analog computing.

A representation is a pattern of symbols that stands for something. The association between a
representation and what it stands for can be recorded as a link in a table or database or as a
memory in people’s brains. There are two important aspects of representations: syntax and
stuff. Syntax is the rules for constructing patterns; it allows us to distinguish patterns that stand
for something from patterns that do not. Stuff is measurable physical states of the world that
hold representations, usually in media or signals. Put these two together and we can build
machines that can detect when a valid pattern is present.

Even this simple notion of a representation has deep consequences. For example, there is no
algorithm for finding the shortest possible representation of something [cha07].

Unfortunately, information processes can be treacherous territory, because “information” is
such an ill-defined and conflicted term, despite many efforts to establish international
standards for its definition. Most definitions of information involve an objective component
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(signs and the things represented by signs) and a subjective component (the meanings). Rocchi
says that information consists of a sign (representation), a referent (the thing represented), and
an observer [roc10]. The objective parts of information are in the signs and referents, while the
subjective part is in the observer. How can we base a scientific field on something with such a
strong subjective component?

Biologists have a similar problem with life. Life scientist Robert Hazen notes that biologists have
no precise definition of life, but they do have a list of seven criteria for when an entity is living
[haz07]. The observable affects of life, such as chemistry, energy, and reproduction, are
sufficient to ground the science of biology. In the same way, we can ground a science of
information on the observable affects (signs and referents) without a precise definition of
“meaning.”

Despite these cautions, representation-transformation can be a reference model of computing.
An information process is a sequence of representations. (In the physical world, it is a
continuously evolving, changing representation.) A computation is an information process in
which the transitions from one element of the sequence to the next are controlled by a
representation. (In the continuous world, we would say that each infinitesimal time and space
step is controlled by a representation.)

The representation-transformation model does not enlarge the class of functions that can be
computed; representations and their representation-controlled transformations are Turing-
equivalent. Its value is as a model of computations that naturally describes not only the
traditional processes of computing machines, but also non-terminating processes, natural
processes, and continuous processes.

Examples

Let us examine a quick series of examples as sanity checks that this definition can work for the
cases we described earlier.

The sequence of configurations of a Turing machine is obviously a computation in this
interpretation.

The non-terminating, interactive processes of operating systems and the Web are also clearly
computations in this interpretation.

DNA translation is a natural information process. The DNA is taken as “genetic code” and is
composed of long strings made up of four types of base pairs. DNA translation is a rule-based
process that “reads” the code and produces amino acids. Douglas Hofstadter was one of the
first to notice that DNA transcription can be interpreted as a Turing-machine like process
[hof85].
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Quantum computing represents information as “qubits” (superpositions of the “0” and “1”
states of a bit) and quantum algorithms as methods of transforming qubits. In some cases, such
as factoring with Schor’s algorithm, a quantum computer can solve problems in polynomial
time that would take exponential time on conventional computers.

Science problems represented as continuous mathematical models operating with real
numbers are continuous information processes.

Conclusions

The computational model of representation-transformation refocuses the definition of
computation from computers to information processes. This model shows that representations
are more fundamental than computers because representations appear in many situations
where no computer is present.

This is actually a fundamental shift. It relinquishes the early idea that “computer science is the
study of phenomena surrounding computers” and emphasizes “computer science is the study
of information processes.” Computers are a means to implement some information processes.
But not all information processes are implemented by computers—for example, DNA
translation, quantum information, optimal methods for continuous systems. Getting computers
out of the central focus may seem hard but is natural. Dijkstra once said, “Computer science is
no more about computers than astronomy is about telescopes.”

Are algorithms really the heart of computing? Or is the more fundamental and inclusive notion
of representations the heart? Science is discovering information processes for which no
algorithm is known; might some of those information processes have no algorithms at all?

This model does not resolve the tortured question of “what is information?” It deals with the
objective parts of information (representations and the mappings to their referents) and but
does not depend on the subjective aspect of information (the individual observer). We can
proceed without solving the observer problem.

This definition of computation also supports a clear definition of computational thinking.
Computational thinking is an approach to problem solving that represents the problem as an
information process relative to a computational model (which may have to be invented or
discovered) and seeks an algorithmic solution. The pioneers of our field used the term
“algorithmic thinking” to describe how the thought processes of computer scientists differ from
other sciences [per62]. In the 1980s, the term “computational thinking” was commonly used to
describe the way that computational scientists approached problem solving, which they
characterized as a new paradigm of science [den09]. | am concerned, however, that the
conception of computational thinking as a method of problem solving may sound too close to
Polya [pol56] and may not call sufficient attention the aspects that make computing unique in
the world [ros06].
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We have been too willing in our field to embrace major terms without clear definitions (for
example, software engineering, structured programming, and cloud computing). When we do
not explicitly declare that we are on a quest for a clearer definition, we allow others (and
ourselves) to think we are satisfied with the imprecision. This is a paradox because our field
demands great precision—the smallest error in a representation can invalidate all subsequent
results. It surprises me that we do not collectively demand more precision in the words we use
to describe who we are and what we do. | am hoping that this symposium will help us to
accomplish that with one of our most fundamental notions.
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